拉格朗日法 描述流體運動的兩種方法之一。拉格朗日法又稱隨體法:跟隨流體質點運動,記錄該質點在運動過程中物理量隨時間變化規律。拉格朗日法是以研究單個流體質點運動過程作為基礎,綜合所有質點的運動,構成整個流體的運動。以某一起始時刻每個質點的坐標位置(a、b、c),作為該質點的標志。任何時刻任意質點在空間的位置(x、y、z)都可以看成是(a、b、c)和t的函數拉格朗日法基本特點: 追蹤流體質點的運動優點: 可直接運用固體力學中質點動力學進行分析拉格朗日法又稱隨體法:跟隨流體質點運動,記錄該質點在運動過程中物理量隨時間變化規。歐拉法它不直接追究質點的運動過程,而是以充滿運動液體質點的空間--流場為對象。研究各時刻質點在流場中的變化規律。將個別流體質點運動過程置之不理,而固守于流場各空間點。通過觀察在流動空間中的每一個空間點上運動要素隨時間的變化,把足夠多的空間點綜合起來而得出的整個流體的運動情況。通常考察流體流動的方法有兩種,即拉格朗日法和歐拉法。歐拉法(euler method)是以流體質點流經流場中各空間點的運動即以流場作為描述對象研究流動的方法。--流場法 歐拉法的特點單步,顯式,一階求導精度,截斷誤差貳階歐拉法的缺點歐拉法簡單地取切線的端點作為下一步的起點進行計算,當步數增多時,誤差會因積累而越來越大。因此歐拉格式一般不用于實際計算。改進歐拉格式為提高精度,需要在歐拉格式的基礎上進行改進。采用區間兩端的函數值的平均值作為直線方程的斜率。改進歐拉法的精度為二階。
兩種余流概念并無優劣之分。各有解決問題的側重點而已。歐拉余流,可以為“探討局地物質通量變化規律,而不太關心物質在水體中的具體歸宿”這類問題提供答案。反之,則為拉格朗日余流的優勢。如,探討污染物或泥沙顆粒的歸宿問題,需要借助拉格朗日余流進行分析;探討灘面凈輸沙方向和強度問題,需要借助歐拉余流進行分析。拋磚引玉,不一定對,僅供參考。 到地學網網站查看回答詳情>>
鋼結構主要有壓桿穩定問題,所以臨界應力有時候要在穩定的基礎上考慮!